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Abstract 

Discovering and understanding patient profiles, or 

phenotypes, of the intended population for a treatment is 

valuable for delivering safe and effective care. This paper 

explores an interpretable patient phenotyping framework 

through k-means clustering, statistical tests, 

visualizations, and decision trees. We use data from a 

single-center study on transcatheter aortic valve 

replacement in Germany (n= 581) as an applied example. 

We clustered the data on continuous demographic, 

medical history, and pre-operational variables using K-

means clustering. We find six distinct clusters and, 

furthermore, a particular cluster with a statistically 

significantly higher incidence of myocardial injury during 

operation compared to the other clusters. Decision tree 

rules to predict this cluster based on the clustering 

variable are extracted and compared to the literature for 

clinical plausibility. Our proof-of-concept analysis 

highlights the potential of interpretable clustering to 

understand patient phenotypes. This methodology can be 

used to find clinically meaningful associations between 

phenotypes and adverse events. 

 

1. Introduction 

Heterogeneity in cardiovascular patient populations 

may lead to differential outcomes from medical 

interventions [1]. Therefore, discovering and 

understanding subpopulations (phenotypes) pertaining to 

patient safety profiles is valuable to delivering optimal 

patient care. 

Because patients are complex and multifaceted, 

analyzing patients univariately (e.g., just using age) may 

yield oversimplification. In this setting, machine learning, 

specifically unsupervised clustering, can be used to capture 

complex relationships across a large set of factors. 

Following this, the clusters can be explored regarding their 

clinical meaningfulness and association with adverse 

events. 

To illustrate this analysis framework, we focus on a 

public dataset surrounding the occurrence of adverse 

events due to transcatheter aortic valve replacement 

(TAVR). 

While similar cluster analyses exist in the settings of 

aortic stenosis and atrial fibrillation [2, 3], we extend the 

methods used to evaluate the meaning of the clusters 

beyond traditional statistical methods by incorporating 

decision trees.  

2. Methods 

2.1. Study Cohort 

We utilize data that was originally collected and 

analyzed by Pollari et al., a German single-center study on 

TAVR indicated for severe stenosis of the native aortic 

valve [4]. The dataset contains patient demographics, 

medical history, baseline echocardiography, and pre-

operational variables on 581 patients. For more 

information on the dataset, please refer to the paper. The 

data is freely accessible online [4] and may be used under 

the creative commons 4.0 license. 

2.2. Dataset Preparation 

Our dataset preparation procedure predominately 

mimicked Kwak et al. [2]. To reduce the number of 

continuous clustering variables, we first removed variables 

with a pairwise Pearson correlation on the non-missing 

data of 0.6 [2]. Then, the more clinically meaningful 

variable was selected in each pair. For example, between 

aortic valve delta max and mean, we chose the mean.  

Following this, missing data for all the baseline patient 

characteristics was imputed using the missForest 

algorithm [5]. The continuous variable with the highest 

missingness was aortic valve delta mean at 41.8% and we 

had reasonable predictors for all variables, thus, all 

variables were imputed [6]. 

2.3. Unsupervised Clustering 

After standardizing the variables, k-means clustering 

was performed on the imputed 17 continuous variables that 

remained after removing the correlated variables (Table 1). 

The optimal number of clusters was selected via three 

methods: locating the elbow in the sum of squares error, 

maximizing the Bayesian information criterion (BIC), and 
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maximizing the silhouette score. We examined one to 20 

clusters. 

 

Table 1. Clustering columns 

Column Name   Units 

Age  

Body Mass Index (BMI)  

Creatinine Levels 

Creatinine Clearance 

Euroscore II 

Ejection Fraction 

Pulmonary Hypertension (PHT) 

Aortic valve (AV) Delta Mean 

AV Effective Orifice Area 

Annulus Area 

Distance from Annulus to Right Coronary 

Artery (RCA) 

Distance from Annulus to Left CA (LCA) 

Valve Oversizing 

Eccentricity Index 

Total Calcium in AV 

Total Calcium in Left Ventricular Outflow 

Tract (LVOT) 

RCC Calcium in LVOT 

years 

kg/m2 

mg/dl 

mL/min 

n/a 

% 

mmHg 

mmHg 

cm2 

cm2 

mm 

mm 

% 

n/a 

mm3 

mm3 

mm3 

 

mm3 

2.4. Interpreting the Clusters 

The clusters were interpreted using both statistical 

methods and decision trees. First, the differences in the 

averages of the clustering variables across the clusters were 

compared using a one-way analysis of variance (ANOVA) 

and visualized using boxplots. Family-wise error rate was 

controlled via a Bonferroni adjustment. 

A decision tree was fit to predict cluster membership 

using the clustering variables. To mitigate overfitting and 

minimize prediction error, we conducted five-fold cross-

validated hyperparameter tuning on the tree max depth, 

minimum samples per leaf, and minimum samples per 

internal node. Gini feature importance and the decision 

rules were extracted from this decision tree.  

The adverse events of death, major bleeding, and 

myocardial injury (MI) were combined with the clustering 

results to view the association with the assigned cluster. 

There were other adverse events available in the dataset; 

however, these variables were either not of direct interest 

or occurred at too small of a rate. 

To test differences in event rate per group across 

clusters, a χ2 test was conducted. If any results were 

statistically significant (p-value < 0.05) then follow-up 

pairwise two-sample proportion tests were run and 

Bonferroni-adjusted for multiple testing. 

For clusters with higher or lower incidence rates of an 

adverse event compared to the other clusters, we extracted 

the decision tree rules to arrive at this cluster and search 

the literature to see if they were clinically plausible. All 

analyses were performed using Python 3.6 besides the 

post-hoc two-proportion tests for adverse event rates, 

which used R version 4.1.1. Decision tree visualization 

used the package “dtreeviz” [7]. 

3. Results 

Six clusters were found via the elbow method and 

maximized both BIC and silhouette score. The number of 

patients in each cluster varied from 13 to 193, and each 

clustering variable was statistically significant in the one-

way ANOVA test (Table 2). 

We can visualize the results in Table 3, such as in Figure 

1. For example, we observe that cluster 0 has typically a 

lower ejection fraction than the rest. 

 
Figure 1. Difference of ejection fraction across clusters. 

 

The optimal hyperparameters for the decision tree were 

a depth of eight, five minimum samples per leaf, and eight 

samples for the split. The top ten feature by Gini 

importance is presented in Table 3. For visualization 

purposes, a decision tree was fitted with the top four 

features (Figure 2). 

 

Table 3. Top 10 feature by Gini importance 

Variable Gini Importance 

Annulus Area 

Creatinine Clearance 

Aortic Valve Delta Mean 

Ejection Fraction 

Total Calcium in Aortic Valve 

BMI 

Creatinine Levels 

Euroscore II 

Age 

PHT  

0.170 

0.169 

0.111 

0.106 

0.099 

0.094 

0.081 

0.031 

0.028 

0.026 

 

Only MI was significantly different across groups in the 

χ2 tests. Particularly, cluster 2 had a higher incidence than 
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the others (Figure 3). Except for cluster 1, likely due to the 

low sample size in this cluster, there was a statistically 

significant between cluster 2 and the other clusters (p < 

0.05).   

 

4. Discussion 

In this paper, we have demonstrated a proof-of-concept 

analysis framework to understand patient phenotypes 

within populations and their association with clinical 

outcomes of interest. Communicating findings from 

unsupervised learning with non-technical audiences and, 

moreover, generating actionable insights is often 

challenging. In this vein, our analysis aims to close this gap 

and, thus, demonstrate the use of clustering techniques for 

patient phenotyping.  

A more traditional approach could be to use a much 

smaller subset of variables to find vulnerable 

subpopulations based on statistically significant 

associations with adverse events; however, there are two 

main limitations to this process. Firstly, we may inflate 

multiplicity bias and risk finding spurious relationships by 

testing against the outcome of interest when choosing 

which variables to stratify patients upon. This is especially 

an issue in situations where clinical knowledge is lacking. 

Secondly, we may trade specificity in identifying patient 

phenotypes for more interpretability in clinically 

evaluating these groups.  

If clustering is instead used, for the first limitation, the 

creation of clusters is agnostic to information about 

adverse events and serves as a data-driven way of 

differentiating patients. Furthermore, the clusters can be 

compared across a variety of contexts, not just a singular 

adverse event. For the second limitation, clustering can 

handle a greater number of variables, increasing 

specificity, and, following this, we can integrate our 

methods for interpretability. 

The use of decision trees is advantageous in order to 

both elucidate the distinction of clusters (e.g., Figure 2) and 

create clearer rules for determining whether an individual 

is part of a subpopulation. For example, the 4.5 cm2 

annulus area cut-off, we see this is close to well known the 

standard definition of small aortic annulus area [8]. We 

find that within this population, to arrive to the highest 

incidence of MI cluster (cluster 2), we must also have 

creatinine clearance of less than 58.47 and a mean gradient 

of less than 37.78. These cut-offs can potentially serve as 

hypothesis generating evidence for further study of 

subpopulations and adverse events. 

Table 2: Descriptive statistics of clusters where all numbers are reported as mean (SD). All variables are significant at the 

0.003 level (Bonferroni adjustment). 

Variable Overall 
Cluster 0 

(n = 104) 

Cluster 1 

(n = 13) 

Cluster 2 

(n = 25) 

Cluster 3 

(n = 123) 

Cluster 4 

(n = 193) 

Cluster 5 

(n = 123) 

Age 81.7 (6.1) 80.6 (5.5) 81.2 (5.5) 74.8 (7.0) 77.5 (6.3) 84.3 (4.6) 84.3 (4.6) 

BMI 27.1 (4.8) 25.7 (3.3) 24.7 (3.6) 27.6 (5.1) 31.6 (5.3) 26.2 (4.1) 25.3 (3.4) 

Creatinine Levels 1.5 (1.0) 1.5 (0.5) 1.3 (0.4) 5.5 (2.0) 1.2 (0.3) 1.3 (0.4) 1.3 (0.4) 

Creatinine Clearance 45.0 (19.6) 41.2 (14.3) 41.7 (14.9) 14.3 (6.3) 67.4 (20.2) 37.6 (12.4) 44.1 (13.0) 

Euroscore II 0.1 (0.1) 0.2 (0.1) 0.1 (0.1) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 

Ejection Fraction 52.6 (12.9) 37.1 (11.5) 46.1 (15.4) 49.3 (8.2) 55.0 (10.6) 59.9 (8.4) 53.2 (10.8) 

PHT Measurement 50.6 (13.8) 54.1 (14.9) 49.1 (14.7) 58.3 (15.9) 47.6 (12.8) 50.9 (13.6) 48.6 (12.4) 

AV Delta Mean 44.6 (14.7) 30.0 (10.5) 48.1 (14.0) 45.1 (14.0) 42.2 (12.4) 47.6 (12.5) 53.2 (10.8) 

AV Effective Orifice 

Area 
0.7 (0.2) 0.8 (0.2) 0.6 (0.2) 0.7 (0.1) 0.8 (0.1) 0.6 (0.1) 0.7 (0.1) 

Annulus Area 4.7 (0.9) 4.9 (0.9) 4.6 (1.1) 5.1 (0.8) 4.9 (0.8) 3.9 (0.6) 5.3 (0.8) 

Distance from 

Annulus to RCA 
15.6 (3.8) 15.7 (3.7) 14.5 (3.3) 16.4 (3.3) 16.2 (4.0) 14.1 (3.2) 17.1 (4.0) 

Distance from 

Annulus to LCA 
13.6 (3.0) 13.6 (2.8) 13.0 (2.6) 14.0 (2.4) 14.4 (3.1) 12.5 (2.6) 14.2 (3.2) 

Valve Oversizing 13.8 (15.7) 13.5 (14.1) 14.9 (21.9) 11.4 (11.5) 14.4 (13.9) 20.0 (17.1) 3.9 (11.0) 

Eccentricity Index 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 

Total Calcium in AV  839.2 (572.4) 604.6 (418.9) 1529.1 (1167.8) 796.4(443.8) 757.7 (396.4) 596.7 (313.0) 1435 (607.5) 

Total Calcium in 

LVOT 
73.2 (123.3) 39.9 (68.2) 431.5 (292.0) 66.0 (77.3) 52.5 (82.9) 53.6 (91.1) 116.2 (145.8) 

RCC Calcium in 

LVOT 
5.9 (21.0) 4.2 (9.0) 128.5 (40.4) 1.8 (5.7) 2.0 (7.0) 2.9 (7.8) 3.8 (8.6) 
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Figure 2. Simplified visualization of the decision tree to 

predict cluster membership 

 
Figure 3: Relative frequency and 95% confidence intervals 

(black lines) of myocardial injury during operation cluster.  

 

This framework is not without limitations. The number 

of clusters and patients per cluster may be sensitive to the 

initial conditions of the clustering algorithm. That is, if one 

were to take another sample from this same population, the 

results might change. As the size of such a sample, we 

would expect this to occur less frequently. Therefore, 

future studies with a larger population are warranted. 

The use of decision trees for interpretability is limited 

by the fact that lower levels of a decision tree are 

conditional on rules higher up in the tree. In addition, a 

decision tree may have multiple leaf nodes for predicting a 

given cluster. Thus, if the tree complexity is high, 

visualizing the decision tree will be difficult, and the 

interpretation of each cluster will be complicated. Future 

directions could investigate the trade-off between tree fit 

and interpretability for patient phenotyping. One direction 

to explain the association between the variables and the 

cluster could be to extract Shapley additive explanations 

(SHAP). This approach would be able to accommodate 

other predictive algorithms and more variables [9]. 
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